Step of Proof: eq_int_cases_test
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
eq
int
cases
test
:
1.
A
: Type
2.
x
:
A
3.
y
:
A
4.
P
:
A
5.
i
:
6.
j
:
7.
P
(if (
i
=
j
) then
x
else
y
fi )
P
(if (
i
=
j
) then
x
else
y
fi )
latex
by
InteriorProof
((EqIntCases 7)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHEN ((Aut
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
: .....truecase..... NILNIL
C1:
7.
P
(
x
)
C1:
8.
i
=
j
C1:
P
(if (
i
=
j
) then
x
else
y
fi )
C
2
: .....falsecase..... NILNIL
C2:
7.
P
(
y
)
C2:
8.
i
j
C2:
P
(if (
i
=
j
) then
x
else
y
fi )
C
.
Definitions
x
:
A
.
B
(
x
)
,
x
:
A
.
B
(
x
)
,
ff
,
tt
,
t
T
,
if
b
then
t
else
f
fi
,
P
Q
,
Unit
,
,
,
Lemmas
eq
int
eq
false
elim
,
eq
int
eq
true
elim
,
eq
int
wf
,
bool
wf
origin